Advertisements
Advertisements
प्रश्न
cos4 A − sin4 A is equal to ______.
(cos4 A − sin4 A) on simplification, gives
पर्याय
2 cos2 A + 1
2 cos2 A − 1
2 sin2 A − 1
2 sin2 A + 1
उत्तर
cos4 A − sin4 A is equal to 2 cos2 A − 1.
Explanation:
The given expression is cos4 A − sin4 A.
Factorising the given expression, we have
cos4 A − sin4 A = [(cos2 A)2 − (sin2 A)2]
= (cos2 A + sin2 A) × (cos2 A − sin2 A) ...[∵ (a2 − b2) = (a + b)(a − b)]
= cos2 A − sin2 A ...[∵ sin2 A + cos2 A = 1]
= cos2 A − (1 − sin2 A)
= cos2 A − 1 + cos2 A
= 2 cos2 A − 1
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
If cosθ = `5/13`, then find sinθ.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Show that tan4θ + tan2θ = sec4θ – sec2θ.