मराठी

Cos4 A − sin4 A is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

cos4 A − sin4 A is equal to ______.

(cos4 A − sin4 A) on simplification, gives

पर्याय

  • 2 cos2 A + 1

  • 2 cos2 A − 1

  • 2 sin2 A − 1

  • 2 sin2 A + 1

MCQ
रिकाम्या जागा भरा

उत्तर

cos4 A − sin4 A is equal to 2 cos2 A − 1.

Explanation:

The given expression is cos4 A − sin4 A.

Factorising the given expression, we have

cos4 A − sin4 A = [(cos2 A)2 − (sin2 A)2]

= (cos2 A + sin2 A) × (cos2 A − sin2 A) ...[∵ (a2 − b2) = (a + b)(a − b)]

= cos2 A − sin2 A  ...[∵ sin2 A + cos2 A = 1]

= cos2 A − (1 − sin2 A) 

= cos2 A − 1 + cos2

= 2 cos2 A − 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 6 | पृष्ठ ५६

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


Prove that:

2 sin2 A + cos4 A = 1 + sin4


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


`(sec^2 theta -1)(cosec^2 theta - 1)=1`


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`


`sqrt((1-cos theta)/(1+cos theta)) = (cosec  theta - cot  theta)`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


Prove the following identity : 

`(1 + tan^2θ)sinθcosθ = tanθ`


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`


Without using trigonometric table , evaluate : 

`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`


If cosθ = `5/13`, then find sinθ. 


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Show that tan4θ + tan2θ = sec4θ – sec2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×