हिंदी

Cos4 A − sin4 A is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

cos4 A − sin4 A is equal to ______.

(cos4 A − sin4 A) on simplification, gives

विकल्प

  • 2 cos2 A + 1

  • 2 cos2 A − 1

  • 2 sin2 A − 1

  • 2 sin2 A + 1

MCQ
रिक्त स्थान भरें

उत्तर

cos4 A − sin4 A is equal to 2 cos2 A − 1.

Explanation:

The given expression is cos4 A − sin4 A.

Factorising the given expression, we have

cos4 A − sin4 A = [(cos2 A)2 − (sin2 A)2]

= (cos2 A + sin2 A) × (cos2 A − sin2 A) ...[∵ (a2 − b2) = (a + b)(a − b)]

= cos2 A − sin2 A  ...[∵ sin2 A + cos2 A = 1]

= cos2 A − (1 − sin2 A) 

= cos2 A − 1 + cos2

= 2 cos2 A − 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 6 | पृष्ठ ५६

संबंधित प्रश्न

if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`


Prove the following identities:

`1 - cos^2A/(1 + sinA) = sinA`


If sec A + tan A = p, show that:

`sin A = (p^2 - 1)/(p^2 + 1)`


`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`


Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


Write the value of cos1° cos 2°........cos180° .


What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


Prove the following identity :

`(cotA + tanB)/(cotB + tanA) = cotAtanB`


Prove the following identity : 

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Prove the following identity:

(sin2θ – 1)(tan2θ + 1) + 1 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×