Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
उत्तर
L.H.S. = `(sintheta - 2sin^3theta)/(2cos^3theta - costheta)`
= `(sintheta(1 - 2sin^2theta))/(costheta(2cos^2theta - 1))`
= `(sintheta(1 - 2sin^2theta))/(costheta[2(1 - sin^2theta) - 1])`
= `(sintheta(1 - 2sin^2theta))/(costheta(2 - 2sin^2theta - 1))`
= `(sintheta(1 - 2sin^2theta))/(costheta(1 - 2sin^2theta))`
= `sintheta/costheta`
= tan θ = R.H.S.
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Write the value of tan10° tan 20° tan 70° tan 80° .
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.