Advertisements
Advertisements
प्रश्न
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
उत्तर
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80)`
`= (sin 35^@ . cos (90^@ - 35^@) + cos 35^@. sin (90^@ - 35^@))/(cosec^2(90^@ - 80^@) - tan^2 80^@`)
`= (sin 35^@ . sin 35^@ + cos 35^@ . cos 35^@) /(sec^2 80^@ - tan^2 80^@)`
`= (sin^2 35^@ + cos^2 35^@)/(sec^2 80^@ - tan^2 80^@) = 1/1 = 1`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1