Advertisements
Advertisements
प्रश्न
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
उत्तर
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
⇒ `sin(90^circ - 18^circ)/cos18^circ - sec(90^circ - 58^circ)/(cosec58^circ)`
⇒ `cos18^circ/cos18^circ - (cosec 58^circ)/(cosec58^circ) = 1 - 1 = 0`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.