Advertisements
Advertisements
प्रश्न
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
उत्तर
`(1- cos^2 theta ) cosec ^2 theta`
= `sin^2 theta xx 1/ (sin^2 theta)`
=1
APPEARS IN
संबंधित प्रश्न
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`