हिंदी

Prove the following identities, where the angles involved are acute angles for which the expressions are defined: 1+secAsecA=sin2A1-cosA [Hint : Simplify LHS and RHS separately.] - Mathematics

Advertisements
Advertisements

प्रश्न

 
 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)` 

[Hint : Simplify LHS and RHS separately.]

 
 
योग

उत्तर

 

 L.H.S

`(1+secA)/secA = (1+1/(cosA))/(1/cosA)`

= `((cosA+1)/cosA)/(1/cosA)`

= `(cosA+1)`

= `((1-cosA)(1+cosA))/(1-cosA)`

= `(1-cos^2A)/(1-cosA)`

= `(sin^2A)/(1-cosA)`           ...[∵ 1cos2 A = sin2A]

R.H.S

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.4 | Q 5.04 | पृष्ठ १९४

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `


If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\] 


 Write True' or False' and justify your answer  the following : 

The value of  \[\cos^2 23 - \sin^2 67\]  is positive . 


The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


Prove the following identities:

`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


For ΔABC , prove that : 

`sin((A + B)/2) = cos"C/2`


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


Find A if tan 2A = cot (A-24°).


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


tan θ cosec2 θ – tan θ is equal to


Choose the correct alternative:

cot θ . tan θ = ?


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


If 2sin2β − cos2β = 2, then β is ______.


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


Show that tan4θ + tan2θ = sec4θ – sec2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×