Advertisements
Advertisements
प्रश्न
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
विकल्प
cos β
cos 2β
sin α
sin 2α
उत्तर
If cos (α + β) = 0, then sin (α – β) can be reduced to cos 2β.
Explanation:
According to the question,
cos(α + β) = 0
Since, cos 90° = 0
We can write,
cos(α + β) = cos 90°
By comparing cosine equation on L.H.S and R.H.S,
We get,
(α + β) = 90°
α = 90° – β
Now we need to reduce sin(α – β),
So, we take,
sin(α – β) = sin(90° – β – β) = sin(90° – 2β)
sin(90° – θ) = cos θ
So, sin(90° – 2β) = cos 2β
Therefore, sin(α – β) = cos 2β
APPEARS IN
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
If `secθ = 25/7 ` then find tanθ.
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`