हिंदी

Prove the Following Trigonometric Identities (1 + Tan^2 Theta)/(1 + Cot^2 Theta) = ((1 - Tan Theta)/(1 - Cot Theta))^2 = Tan^2 Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities

`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`

योग

उत्तर

We have to prove `(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`

Consider the expression

L.H.S

`(1 + tan^2 theta)/(1 + cot^2 theta) = (1 + tan^2 theta)/(1 + 1/(tan^2 theta))`

= `(1 +tan^2 theta)/((tan^2 theta + 1)/tan^2 theta)`

`= tan^2 theta (1 + tan^2 theta)/(1 + tan^2 theta)`

`= tan^2 theta` 

= R.H.S

Again, we have 

L.H.S

`((1 - tan theta)/(1 - cot theta))^2 = ((1 - tan theta)/(1 - 1/(tan theta)))^2`

`= ((1 - tan theta)/((tan theta - 1)/tan theta))^2`

`=[(tantheta(1-tantheta))/-(1-tantheta)]^2`

`=(-tantheta)^2=tan^2theta`

= R.H.S

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 28 | पृष्ठ ४४

संबंधित प्रश्न

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove that:

`cosA/(1 + sinA) = secA - tanA`


Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`


`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`


`((sin A-  sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0` 


If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`


Write the value of tan1° tan 2°   ........ tan 89° .


Write the value of cos1° cos 2°........cos180° .


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


If sinθ = `11/61`, find the values of cosθ using trigonometric identity.


If sec θ + tan θ = x, then sec θ =


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity : 

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle. 


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


If 3 sin θ = 4 cos θ, then sec θ = ?


If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×