Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
उत्तर
We have to prove `(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Consider the expression
L.H.S
`(1 + tan^2 theta)/(1 + cot^2 theta) = (1 + tan^2 theta)/(1 + 1/(tan^2 theta))`
= `(1 +tan^2 theta)/((tan^2 theta + 1)/tan^2 theta)`
`= tan^2 theta (1 + tan^2 theta)/(1 + tan^2 theta)`
`= tan^2 theta`
= R.H.S
Again, we have
L.H.S
`((1 - tan theta)/(1 - cot theta))^2 = ((1 - tan theta)/(1 - 1/(tan theta)))^2`
`= ((1 - tan theta)/((tan theta - 1)/tan theta))^2`
`=[(tantheta(1-tantheta))/-(1-tantheta)]^2`
`=(-tantheta)^2=tan^2theta`
= R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that sec2θ − cos2θ = tan2θ + sin2θ
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.