मराठी

Prove the Following Trigonometric Identities (1 + Tan^2 Theta)/(1 + Cot^2 Theta) = ((1 - Tan Theta)/(1 - Cot Theta))^2 = Tan^2 Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities

`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`

बेरीज

उत्तर

We have to prove `(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`

Consider the expression

L.H.S

`(1 + tan^2 theta)/(1 + cot^2 theta) = (1 + tan^2 theta)/(1 + 1/(tan^2 theta))`

= `(1 +tan^2 theta)/((tan^2 theta + 1)/tan^2 theta)`

`= tan^2 theta (1 + tan^2 theta)/(1 + tan^2 theta)`

`= tan^2 theta` 

= R.H.S

Again, we have 

L.H.S

`((1 - tan theta)/(1 - cot theta))^2 = ((1 - tan theta)/(1 - 1/(tan theta)))^2`

`= ((1 - tan theta)/((tan theta - 1)/tan theta))^2`

`=[(tantheta(1-tantheta))/-(1-tantheta)]^2`

`=(-tantheta)^2=tan^2theta`

= R.H.S

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 28 | पृष्ठ ४४

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`1/(1 + sin A) + 1/(1 - sin A) =  2sec^2 A`


Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove that:

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identities:

`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`


Prove the following identities:

`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`


`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


Prove the following identity :

`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.


Prove that sec2θ − cos2θ = tan2θ + sin2θ


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×