Advertisements
Advertisements
प्रश्न
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
उत्तर
Given,
tan θ + sec θ = l ...(i)
⇒ `((tan theta + sec theta)(sec theta - tan theta))/((sec theta - tan theta))` = l ...[Multiply by (sec θ – tan θ) on numerator and denominator L.H.S]
⇒ `((sec^2 theta - tan^2 theta))/((sec theta - tan theta))` = l
⇒ `1/(sec theta - tan theta)` = l ...[∵ sec2θ – tan2θ = 1]
⇒ sec θ – tan θ = `1/l` ...(ii)
On adding equations (i) and (ii), we get
2 sec θ = `l + 1/l`
⇒ sec θ = `(l^2 + 1)/(2l)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
The value of sin2 29° + sin2 61° is
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ