Advertisements
Advertisements
प्रश्न
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
उत्तर
L.H.S = sec2θ + cosec2θ
= `1/(cos^2theta) + 1/(sin^2theta)`
= `(sin^2theta + cos^2theta)/(cos^2theta*sin^2theta)`
= `1/(cos^2theta*sin^2theta)` ......[∵ sin2θ + cos2θ = 1]
= `1/(cos^2theta) xx 1/(sin^2theta)`
= sec2θ × cosec2θ
= R.H.S
∴ sec2θ + cosec2θ = sec2θ × cosec2θ
APPEARS IN
संबंधित प्रश्न
(secA + tanA) (1 − sinA) = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
Write the value of cos1° cos 2°........cos180° .
If `secθ = 25/7 ` then find tanθ.
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
sin2θ + sin2(90 – θ) = ?
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove that sin4A – cos4A = 1 – 2cos2A
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.