मराठी

If 5 tan β = 4, then ββββ5 sinβ-2cosβ5sinβ+2cosβ = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.

पर्याय

  • `1/3`

  • `2/5`

  • `3/5`

  • 6

MCQ
रिकाम्या जागा भरा

उत्तर

If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = `underline(bb(1/3)`.

Explanation:

Given, 5 tan β = 4

tan β = `4/5`

Now, `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)`

Dividing numerator and denominator by cos β

= `(5  sin β/cos β - 2  cos β/cos β)/(5  sin β/cos β + 2  cos β/cos β)`

= `(5 tan β - 2)/(5 tan β + 2)`

Putting tan θ = `4/5`

= `(5 xx 4/5 - 2)/(5 xx 4/5 + 2)`

= `(4 - 2)/(4 + 2)`

= `2/6`

= `1/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Standard Sample

संबंधित प्रश्‍न

If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.


Prove the following trigonometric identities.

`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `


`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`


`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`


Write the value of `(1 + cot^2 theta ) sin^2 theta`. 


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


If cos A + cos2 A = 1, then sin2 A + sin4 A =


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


Without using trigonometric table , evaluate : 

`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1


Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×