Advertisements
Advertisements
प्रश्न
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
पर्याय
`1/3`
`2/5`
`3/5`
6
उत्तर
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = `underline(bb(1/3)`.
Explanation:
Given, 5 tan β = 4
tan β = `4/5`
Now, `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)`
Dividing numerator and denominator by cos β
= `(5 sin β/cos β - 2 cos β/cos β)/(5 sin β/cos β + 2 cos β/cos β)`
= `(5 tan β - 2)/(5 tan β + 2)`
Putting tan θ = `4/5`
= `(5 xx 4/5 - 2)/(5 xx 4/5 + 2)`
= `(4 - 2)/(4 + 2)`
= `2/6`
= `1/3`
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A