Advertisements
Advertisements
प्रश्न
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
उत्तर
Here, `(sec theta + tan theta ) /( sec theta - tan theta)`
=`((sec theta + tan theta ) ( sec theta + tan theta))/(( sec theta - tan theta ) ( sec theta + tan theta ))`
=` ((sec theta + tan theta )^2) /( sec^2 theta - tan^2 theta)`
=`((sec theta + tan theta )^2)/1`
=`(sec theta + tan theta )^2`
Again , `(sec theta + tan theta )2`
=` sec^2 theta + tan^2 theta + 2 sec theta tan theta `
=` 1+ tan^2 theta + tan^2 theta + 2 sec theta tan theta`
=`1+2 tan^2 theta + 2 sec theta tan theta `
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
Write the value of tan1° tan 2° ........ tan 89° .
What is the value of (1 + cot2 θ) sin2 θ?
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`