Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
उत्तर
LHS = `tan^2 A sec^2 B - sec^2 A tan^2 B`
`= tan^2 A + (1 + tan^2 B) - sec^2 A (tan^2 A)`
`= tan^2 A + tan^2 A tan^2 B - tan^2 B(1 + tan^2 A)` (`∵ sec^2 A = 4 tan^2 A`)
`= tan^2 A + tan^2 A tan^2 B - tan^2 B - tan^2 B tan^2 A`
`= tan^2 A - tan^2 B`
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Choose the correct alternative:
cot θ . tan θ = ?
Choose the correct alternative:
cos 45° = ?
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove that sin4A – cos4A = 1 – 2cos2A
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?