Advertisements
Advertisements
प्रश्न
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
उत्तर
We have,
`6 tan^2 θ-6/cos^2 θ= 6 tan^2 θ-6 sec ^2 θ`
= `-6 (sec^2θ-tan^2 θ)` ...{`sec ^2 θ-tan ^2 θ-1` }
= -6 × 1
= -6
\[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
`(1+tan^2A)/(1+cot^2A)` = ______.
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.