Advertisements
Advertisements
प्रश्न
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
उत्तर
We have `( cosec theta - sin theta ) = a^3`
= > ` a^3 = (1/ sin theta - sin theta)`
= > `a^3 = ((1- sin^2 theta))/sin theta = cos^2 theta / sin theta`
∴ `a=(cos^(2/3) theta)/(sin ^(1/3) theta)`
Again, `(sec theta - cos theta ) = b^3`
= >`b^3 = (1/cos theta - cos theta )`
=` ((1-cos^2 theta))/ cos theta`
=` (sin^2 theta)/cos theta`
∴ b =` (sin ^(2/3) theta)/(cos ^(1/3) theta)`
Now , LHS = `a^2 b^2 (a^2 + b^2 ) `
=` a^3 (ab^2) + ( a^2 b^2 ) b^3 `
=`a^3 ( ab^2 ) + ( a^2 b^2 ) b^3 `
=`(cos^2 theta)/(sin theta) xx [(cos ^(2/3) theta)/(sin^(1/3) theta) xx (sin ^(4/3)theta)/(cos ^(2/3) theta)] + [ ( cos ^(4/3) theta theta)/(sin ^(2/3) theta)xx(sin^(2/3)theta)/(cos ^(1/3)theta)] xx sin^2 theta/ cos theta`
=`cos^2 theta / sin theta xx sin theta + cos theta xx sin^2theta / costheta`
=`cos^2 theta + sin^2 theta = 1`
= RHS
Hence, proved
APPEARS IN
संबंधित प्रश्न
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
If 2sin2θ – cos2θ = 2, then find the value of θ.
Eliminate θ if x = r cosθ and y = r sinθ.
sec θ when expressed in term of cot θ, is equal to ______.
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`