मराठी

If `(Cosec Theta - Sin Theta )= A^3 and (Sec Theta - Cos Theta ) = B^3 , " Prove that " A^2 B^2 ( A^2+ B^2 ) =1` - Mathematics

Advertisements
Advertisements

प्रश्न

If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`

उत्तर

We have `( cosec theta - sin theta ) = a^3`

      = > ` a^3 = (1/ sin theta - sin theta)`

      = > `a^3 = ((1- sin^2 theta))/sin theta = cos^2 theta / sin theta`

∴ `a=(cos^(2/3) theta)/(sin ^(1/3) theta)`

Again, `(sec theta - cos theta ) = b^3`

       = >`b^3 = (1/cos theta - cos theta )`

      =` ((1-cos^2 theta))/ cos theta`

      =` (sin^2 theta)/cos theta`

∴ b =` (sin ^(2/3) theta)/(cos ^(1/3) theta)`

Now , LHS  = `a^2 b^2 (a^2 + b^2 ) `

  =` a^3 (ab^2) + ( a^2 b^2 ) b^3 `

=`a^3 ( ab^2 ) + ( a^2 b^2 ) b^3 `

=`(cos^2 theta)/(sin theta) xx [(cos ^(2/3) theta)/(sin^(1/3) theta) xx (sin ^(4/3)theta)/(cos ^(2/3) theta)] + [ ( cos ^(4/3) theta theta)/(sin ^(2/3) theta)xx(sin^(2/3)theta)/(cos ^(1/3)theta)] xx sin^2 theta/ cos theta`

 =`cos^2 theta / sin theta xx sin theta + cos theta xx sin^2theta / costheta`

 =`cos^2 theta + sin^2 theta = 1`

= RHS
Hence, proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 2

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 2 | Q 9

संबंधित प्रश्‍न

Prove that

`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove the following identities:

`1 - sin^2A/(1 + cosA) = cosA`


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `


`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`


\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1


The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


If 2sin2θ – cos2θ = 2, then find the value of θ.


Eliminate θ if x = r cosθ and y = r sinθ.


sec θ when expressed in term of cot θ, is equal to ______.


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×