हिंदी

If `(Cosec Theta - Sin Theta )= A^3 and (Sec Theta - Cos Theta ) = B^3 , " Prove that " A^2 B^2 ( A^2+ B^2 ) =1` - Mathematics

Advertisements
Advertisements

प्रश्न

If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`

उत्तर

We have `( cosec theta - sin theta ) = a^3`

      = > ` a^3 = (1/ sin theta - sin theta)`

      = > `a^3 = ((1- sin^2 theta))/sin theta = cos^2 theta / sin theta`

∴ `a=(cos^(2/3) theta)/(sin ^(1/3) theta)`

Again, `(sec theta - cos theta ) = b^3`

       = >`b^3 = (1/cos theta - cos theta )`

      =` ((1-cos^2 theta))/ cos theta`

      =` (sin^2 theta)/cos theta`

∴ b =` (sin ^(2/3) theta)/(cos ^(1/3) theta)`

Now , LHS  = `a^2 b^2 (a^2 + b^2 ) `

  =` a^3 (ab^2) + ( a^2 b^2 ) b^3 `

=`a^3 ( ab^2 ) + ( a^2 b^2 ) b^3 `

=`(cos^2 theta)/(sin theta) xx [(cos ^(2/3) theta)/(sin^(1/3) theta) xx (sin ^(4/3)theta)/(cos ^(2/3) theta)] + [ ( cos ^(4/3) theta theta)/(sin ^(2/3) theta)xx(sin^(2/3)theta)/(cos ^(1/3)theta)] xx sin^2 theta/ cos theta`

 =`cos^2 theta / sin theta xx sin theta + cos theta xx sin^2theta / costheta`

 =`cos^2 theta + sin^2 theta = 1`

= RHS
Hence, proved

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 2

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 2 | Q 9

संबंधित प्रश्न

If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`


Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.


Prove the following trigonometric identities.

`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`


Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)

Show that one of the values of each member of this equality is sin α sin β sin γ


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


Prove that:

`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`


`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`


If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ. 


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Prove that:

`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)` 


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×