Advertisements
Advertisements
प्रश्न
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
उत्तर
We have `( cosec theta - sin theta ) = a^3`
= > ` a^3 = (1/ sin theta - sin theta)`
= > `a^3 = ((1- sin^2 theta))/sin theta = cos^2 theta / sin theta`
∴ `a=(cos^(2/3) theta)/(sin ^(1/3) theta)`
Again, `(sec theta - cos theta ) = b^3`
= >`b^3 = (1/cos theta - cos theta )`
=` ((1-cos^2 theta))/ cos theta`
=` (sin^2 theta)/cos theta`
∴ b =` (sin ^(2/3) theta)/(cos ^(1/3) theta)`
Now , LHS = `a^2 b^2 (a^2 + b^2 ) `
=` a^3 (ab^2) + ( a^2 b^2 ) b^3 `
=`a^3 ( ab^2 ) + ( a^2 b^2 ) b^3 `
=`(cos^2 theta)/(sin theta) xx [(cos ^(2/3) theta)/(sin^(1/3) theta) xx (sin ^(4/3)theta)/(cos ^(2/3) theta)] + [ ( cos ^(4/3) theta theta)/(sin ^(2/3) theta)xx(sin^(2/3)theta)/(cos ^(1/3)theta)] xx sin^2 theta/ cos theta`
=`cos^2 theta / sin theta xx sin theta + cos theta xx sin^2theta / costheta`
=`cos^2 theta + sin^2 theta = 1`
= RHS
Hence, proved
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)