हिंदी

If Sin θ + Cos θ = X, Prove that `Sin^6 Theta + Cos^6 Theta = (4- 3(X^2 - 1)^2)/4` - Mathematics

Advertisements
Advertisements

प्रश्न

If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`

उत्तर

Given `sin theta + cos theta = x`

Squaring the given equation, we have

`(sin theta + cos theta)^2 = x^2`

`=> sin^2 theta + 2 sin theta cos theta = cos^2 theta = x^2`                                   

`=> (sin^2 theta + cos^2 theta) + 2sin theta cos theta = x^2`

`=> 1 + 2 sin theta cos theta = x^2`

`=> 2 sin theta cos theta = x^2  -1`

`=> sin theta cos theta = (x^2- 1)/2`

Squaring the last equation, we have

`(sin theta cos theta)^2 = (x^2  - 1)^2/4` 

`=> sin^2 theta cos^2 theta = (x^2 - 1)^2/4`

`=> sin^2 theta cos^2 theta = (s^2 -1)/4`

Therefore, we have

`sin^6 theta + cos^6 theta = (sin^2 theta)^3 + (cos^2 theta)^3`

`= (sin^2 theta + cos^2 theta)^3 -  3sin^3 theta cos^2 theta (sin^2 theta + cos^2 theta)`

`= (1)^3 - 3 ((x^2 - 1)^2)/4 (1)`

`= 1 - 3 (x^2 - 1)^2/4 (1)`

`x = 1 - 3 (x^2 - 1)^2/4`

`= (4- 3(x^2 - 1)^2)/4`

hence Proved

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 86 | पृष्ठ ४७

संबंधित प्रश्न

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


Prove the following identities:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`


If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`


If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\] 


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


Prove the following identity : 

`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


If 1 – cos2θ = `1/4`, then θ = ?


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×