Advertisements
Advertisements
प्रश्न
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
उत्तर
Given `sin theta + cos theta = x`
Squaring the given equation, we have
`(sin theta + cos theta)^2 = x^2`
`=> sin^2 theta + 2 sin theta cos theta = cos^2 theta = x^2`
`=> (sin^2 theta + cos^2 theta) + 2sin theta cos theta = x^2`
`=> 1 + 2 sin theta cos theta = x^2`
`=> 2 sin theta cos theta = x^2 -1`
`=> sin theta cos theta = (x^2- 1)/2`
Squaring the last equation, we have
`(sin theta cos theta)^2 = (x^2 - 1)^2/4`
`=> sin^2 theta cos^2 theta = (x^2 - 1)^2/4`
`=> sin^2 theta cos^2 theta = (s^2 -1)/4`
Therefore, we have
`sin^6 theta + cos^6 theta = (sin^2 theta)^3 + (cos^2 theta)^3`
`= (sin^2 theta + cos^2 theta)^3 - 3sin^3 theta cos^2 theta (sin^2 theta + cos^2 theta)`
`= (1)^3 - 3 ((x^2 - 1)^2)/4 (1)`
`= 1 - 3 (x^2 - 1)^2/4 (1)`
`x = 1 - 3 (x^2 - 1)^2/4`
`= (4- 3(x^2 - 1)^2)/4`
hence Proved
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
If 1 – cos2θ = `1/4`, then θ = ?
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1