Advertisements
Advertisements
प्रश्न
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
उत्तर
Given:
`x = a sec theta cos phi`
`=> x/a = sec theta cos phi` ........(1)
`y = b sec theta sin phi`
`=> y/b = sec theta sin phi`
`=> y/b = sec theta sin phi`
`=> zx/c = tan theta`
We have to prove that `x^2/a^2 + y^2/b^2 - z^2/c^2 = 1`
Squaring the above equations and then subtracting the third from the sum of the first two, we have
`(x/a)^2 + (y/b)^2 - (z/c)^2 = (sec theta cos phi)^2 + (sec theta sin phi)^2 - (tan theta)^2`
`=> x^2/ a^2 + y^2/b^2 - z^2/c62 = sec^2 theta cos^2 phi + sec^2 theta sin^2 phi - tan^2 theta`
`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = (sec^2 theta cos^2 phi + sec^2 theta sin&2 phi) - tan^2 theta`
`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = sec^2 theta(cos^2 phi + sin^2 phi) - tan^2 theta`
`=> x^2/a^2 + y^2/b^2 - z^2/c^2= sec^2 theta (1) = tan^2 theta`
`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = sec^2 theta - tan^2 theta`
`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = 1`
Hence proved.
APPEARS IN
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.