Advertisements
Advertisements
प्रश्न
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
उत्तर
L.H.S : (sinθ+cosecθ)2 +(cosθ+secθ)2
=sin2θ + cosec2θ + 2 +cos2θ + sec2θ + 2 `[because sin θ = 1/(cosecθ) " and cos "θ = 1/ (secθ)]`
= sin2θ + cos2θ+1+cot2θ+1+tan2θ+4 `[because cosec^2θ+1+cot^2θ" and "sec^2 θ =1+ tan^2θ]`
=sin2θ+cos2θ+1+cot2θ+1+tan2θ+4 `[because cosec^2θ+1+cot^2θ " and" sec^2 θ=1 +tan^2θ]`
=1+1+1+4+tan2θ+cot2θ `[because cos^2θ+ sin^2θ=1]`
=7+ tan2θ+cot2θ
L.H.S-R.H.S
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`