Advertisements
Advertisements
प्रश्न
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
उत्तर
L.H.S : (sinθ+cosecθ)2 +(cosθ+secθ)2
=sin2θ + cosec2θ + 2 +cos2θ + sec2θ + 2 `[because sin θ = 1/(cosecθ) " and cos "θ = 1/ (secθ)]`
= sin2θ + cos2θ+1+cot2θ+1+tan2θ+4 `[because cosec^2θ+1+cot^2θ" and "sec^2 θ =1+ tan^2θ]`
=sin2θ+cos2θ+1+cot2θ+1+tan2θ+4 `[because cosec^2θ+1+cot^2θ " and" sec^2 θ=1 +tan^2θ]`
=1+1+1+4+tan2θ+cot2θ `[because cos^2θ+ sin^2θ=1]`
=7+ tan2θ+cot2θ
L.H.S-R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
(sec θ + tan θ) . (sec θ – tan θ) = ?
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.