Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
उत्तर
We know `sin^2 A + cos^2 A = 1`
`sin^2 A = 1 - cos^2 A`
`=> sin^2 A . cosec^2 A`
`=> sin^2 A . 1/(sin^2 A) = 1`
∴ L.H.S = R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
If `sec theta = x ,"write the value of tan" theta`.
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
cos4 A − sin4 A is equal to ______.
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
Choose the correct alternative:
sec 60° = ?
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
If 2sin2β − cos2β = 2, then β is ______.
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.