Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
उत्तर
LHS = `(tanθ + secθ - 1)/(tanθ - secθ + 1) `
= `(tanθ + secθ - {sec^2θ - tan^2θ})/(1 + tanθ -secθ)`
= `(tanθ + secθ - {(secθ + tanθ)(secθ - tanθ)})/(1 + tanθ - secθ)`
= `([tanθ + secθ]{1 - (secθ - tanθ)})/[[1 + tanθ - secθ]` = `([tanθ + secθ][1 + tanθ - secθ])/[[1 + tanθ - secθ]]`
= `[tanθ + secθ] = (1 + sinθ)/cosθ` = RHS
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Prove that sin4A – cos4A = 1 – 2cos2A