Advertisements
Advertisements
प्रश्न
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
उत्तर
LHS = `cosA/(1 + sinA)`
RHS = secA - tanA
= `1/cosA - sinA/cosA = (1 - sinA)/cosA`
= `(1 - sinA)/cosA((1 + sinA)/(1 + sinA)) = ((1 - sin^2A)/(cosA(1 + sinA)))`
= `cos^2A/(cosA(1 + sinA)) = cosA/((1 + sinA) ` = LHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.