Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
उत्तर
LHS = `(1 + sinA)/(1 - sinA)`
RHS = `(cosecA + 1)/(cosecA - 1) = (1/sinA + 1)/(1/sinA - 1)`
= `(1 + sinA)/(1 - sinA)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
` tan^2 theta - 1/( cos^2 theta )=-1`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α