рдорд░рд╛рдареА

`(1-tan^2 Theta)/(Cot^2-1) = Tan^2 Theta` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`

рдЙрддреНрддрд░

LHS = `(1- tan^2 theta)/(cot^2 theta-1)`

      =`(1-(sin^2 theta)/(cos^2 theta))/((cos^2 theta )/(sin^2 theta)-1)`

      =`((cos^2 theta - sin^2 theta)/(cos^2 theta))/((cos^2theta-sin^2 theta)/(sin^2 theta))`

     =`(sin^2 theta)/(cos^2 theta)`

     = tan2 ЁЭЬГ 
     = RHS

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 8: Trigonometric Identities - Exercises 1

APPEARS IN

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди

If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`


If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


 

Evaluate

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`

 

(secA + tanA) (1 − sinA) = ______.


Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`


`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`


If tanθ `= 3/4` then find the value of secθ.


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


Prove the following identity :

`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`


Prove the following identity :

`(cotA + tanB)/(cotB + tanA) = cotAtanB`


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Evaluate:

`(tan 65^circ)/(cot 25^circ)`


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


If cos θ = `24/25`, then sin θ = ?


Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×