Advertisements
Advertisements
рдкреНрд░рд╢реНрди
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
рдЙрддреНрддрд░
LHS = `(1- tan^2 theta)/(cot^2 theta-1)`
=`(1-(sin^2 theta)/(cos^2 theta))/((cos^2 theta )/(sin^2 theta)-1)`
=`((cos^2 theta - sin^2 theta)/(cos^2 theta))/((cos^2theta-sin^2 theta)/(sin^2 theta))`
=`(sin^2 theta)/(cos^2 theta)`
= tan2 ЁЭЬГ
= RHS
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
(secA + tanA) (1 − sinA) = ______.
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
If tanθ `= 3/4` then find the value of secθ.
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
If cos θ = `24/25`, then sin θ = ?
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.