Advertisements
Advertisements
प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
उत्तर
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^@73^@)`
`(= [sin(90^@ - 27^@)]^2+sin^2 27^@)/([cos(90^@ - 73^@)]^2 + cos^2 73^@)`
`= ([cos27^@]^2 + sin^2 27^@)/([sin 73^@]^2 + cos^2 73^@)`
`= (cos^2 27^@ + sin^2 27^@)/(sin^2 73^@+ cos^2 73^@)`
= 1/1 (As sin2A + cos2A = 1)
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
`(sec^2 theta-1) cot ^2 theta=1`
cosec4θ − cosec2θ = cot4θ + cot2θ
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
What is the value of (1 + cot2 θ) sin2 θ?
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
If cos A + cos2 A = 1, then sin2 A + sin4 A =
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
tan θ cosec2 θ – tan θ is equal to
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`