Advertisements
Advertisements
प्रश्न
Write all the other trigonometric ratios of ∠A in terms of sec A.
उत्तर
(i) `sin A = sin A /1`
= `(sin A ÷ cos A)/(1÷ cos A)`
= `(sin A/cosA)/(1/cosA)`
= `tan A/sec A`
= `sqrt( tan^2 A)/sec A`
= `sqrt(sec^2A-1)/(secA)`
(ii) `cos A = 1/(sec A)`
(iii) `tan A = sqrt(tan^2 A) = sqrt(sec^2 A-1)`
(iv) `cosec A = 1/sinA = secA/sqrt(sec^2A-1)`
(v) `cot A = (cos A)/(sin A)`
= `(1/(secA))/(sqrt(sec^2A-1)/secA)`
= `1/(sqrt(sec^2A-1))`
APPEARS IN
संबंधित प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
Evaluate `(sin 18^@)/(cos 72^@)`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Solve.
`tan47/cot43`
Solve.
`sec75/(cosec15)`
Solve.
`cos55/sin35+cot35/tan55`
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use trigonometrical tables to find tangent of 42° 18'
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If 8 tan x = 15, then sin x − cos x is equal to
The value of cos2 17° − sin2 73° is
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
If cot( 90 – A ) = 1, then ∠A = ?
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)