मराठी

Write all the other trigonometric ratios of ∠A in terms of sec A. - Mathematics

Advertisements
Advertisements

प्रश्न

Write all the other trigonometric ratios of ∠A in terms of sec A.

बेरीज

उत्तर

(i) `sin A  = sin A /1`

= `(sin A ÷ cos A)/(1÷ cos A)`

= `(sin A/cosA)/(1/cosA)`

= `tan A/sec A`

= `sqrt( tan^2 A)/sec A`

= `sqrt(sec^2A-1)/(secA)`

(ii) `cos A =  1/(sec A)`

(iii) `tan A = sqrt(tan^2 A) = sqrt(sec^2 A-1)`

(iv) `cosec  A  = 1/sinA = secA/sqrt(sec^2A-1)`

(v) `cot A = (cos A)/(sin A)`

= `(1/(secA))/(sqrt(sec^2A-1)/secA)`

= `1/(sqrt(sec^2A-1))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.4 | Q 2 | पृष्ठ १९३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.


`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`


Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


Evaluate `(sin 18^@)/(cos 72^@)`


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


Prove the following trigonometric identities.

(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1


if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`


Solve.
`tan47/cot43`


Solve.
`sec75/(cosec15)`


Solve.
`cos55/sin35+cot35/tan55`


Express the following in terms of angle between 0° and 45°:

sin 59° + tan 63°


Evaluate:

`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`


Evaluate:

`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`


Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°


Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°


Find the value of x, if sin 2x = 2 sin 45° cos 45°


Use trigonometrical tables to find tangent of 42° 18'


Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.


What is the maximum value of \[\frac{1}{\sec \theta}\]


If \[\cos \theta = \frac{2}{3}\]  find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]


Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]


Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]


If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


If 8 tan x = 15, then sin x − cos x is equal to 


The value of cos2 17° − sin2 73° is 


The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\] 


If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =


If angles A, B, C to a ∆ABC from an increasing AP, then sin B = 


If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]


If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 


If ∆ABC is right angled at C, then the value of cos (A + B) is ______.


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.

cos(90° - A) · sec 77° = 1


The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is


If cot( 90 – A ) = 1, then ∠A = ?


2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.


Prove the following:

tan θ + tan (90° – θ) = sec θ sec (90° – θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×