Advertisements
Advertisements
प्रश्न
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
उत्तर
Given: ` tan θ= 1/sqrt5`
We know that: `tan θ=("Prependicular")/("Base")`
`("Prependicular")/("Base")=1/sqrt5`
`"Hypotenuse"= sqrt( ("Perpendicular")^2+("Base")^2)`
`"Hypotenuse"=sqrt(1+5)`
`"Hypotenuse"=sqrt6`
Now we find, `(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)`
=`(("hypotenuse")^2/("Perpendicular")^2-("hypotenuse")^2/("Base")^2)/(("hypotenuse")^2/("Perpendicular")^2+("hypotenuse")^2/("Base")^2)`
= `((sqrt6)^2/(1)^2-(sqrt6)^2/(sqrt5)^2)/((sqrt6)^2/(1)^2+((sqrt6))/(sqrt5)^2)`
= `(6/1-6/5)/(6/1+6/5)`
=`(24/5)/(36/5)`
=`2/3`
Hence the value of `(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)` is `2/3`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Solve.
`cos22/sin68`
Solve.
`cos55/sin35+cot35/tan55`
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
What is the maximum value of \[\frac{1}{\sec \theta}\]
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of tan 1° tan 2° tan 3° ...... tan 89° is
The value of cos 1° cos 2° cos 3° ..... cos 180° is
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
If cot( 90 – A ) = 1, then ∠A = ?
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
Sin 2B = 2 sin B is true when B is equal to ______.