मराठी

P Given 4 Cos θ − Sin θ 2 Cos θ + Sin θ What is the Value of C O S E C 2 θ − Sec 2 θ C O S E C 2 θ + Sec 2 θ - Mathematics

Advertisements
Advertisements

प्रश्न

Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]

बेरीज

उत्तर

Given: ` tan θ= 1/sqrt5`

We know that: `tan θ=("Prependicular")/("Base")` 

`("Prependicular")/("Base")=1/sqrt5`  

`"Hypotenuse"= sqrt( ("Perpendicular")^2+("Base")^2)` 

`"Hypotenuse"=sqrt(1+5)`

`"Hypotenuse"=sqrt6` 

Now we find, `(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)` 

=`(("hypotenuse")^2/("Perpendicular")^2-("hypotenuse")^2/("Base")^2)/(("hypotenuse")^2/("Perpendicular")^2+("hypotenuse")^2/("Base")^2)` 

= `((sqrt6)^2/(1)^2-(sqrt6)^2/(sqrt5)^2)/((sqrt6)^2/(1)^2+((sqrt6))/(sqrt5)^2)` 

= `(6/1-6/5)/(6/1+6/5)` 

=`(24/5)/(36/5)` 

=`2/3` 

Hence the value of `(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)` is `2/3` 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.4 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.4 | Q 8 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Without using trigonometric tables, evaluate the following:

`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`


If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


Solve.
`cos22/sin68`


Solve.
`cos55/sin35+cot35/tan55`


Express the following in terms of angles between 0° and 45°:

cosec68° + cot72°


Evaluate:

`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2)  cos45^circ`


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A


Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0


If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`


What is the maximum value of \[\frac{1}{\sec \theta}\]


If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]


If tan2 45° − cos2 30° = x sin 45° cos 45°, then x


The value of tan 1° tan 2° tan 3° ...... tan 89° is 


The value of cos 1° cos 2° cos 3° ..... cos 180° is 


If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\] 


Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`


If cot( 90 – A ) = 1, then ∠A = ?


In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?


Sin 2B = 2 sin B is true when B is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×