Advertisements
Advertisements
प्रश्न
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
उत्तर
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
`2 tan(90^circ - 33^circ)/(cot33^circ) - cot(90^circ - 20^circ)/(tan20^circ) - sqrt(2)(1/sqrt2)`
`2 cot33^circ/(cot33^circ) - tan20^circ/(tan20^circ) - 1`
= 2 – 1 – 1
= 0
APPEARS IN
संबंधित प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
Sin 2A = 2 sin A is true when A =
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.