Advertisements
Advertisements
प्रश्न
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
पर्याय
\[\frac{5}{7}\]
\[\frac{3}{7}\]
\[\frac{1}{12}\]
\[\frac{3}{4}\]
उत्तर
Given that:
`tan θ=1/sqrt7`
We are asked to find the value of the following expression
`(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)`
Since `tan θ= "Perpendicular"/"Base"` .
⇒ `"Perpendicular"=1`
⇒ `"Base"= sqrt7`
⇒ `"Hypotenuse"=sqrt(1+7)`
⇒`" Hypotenuse"=sqrt8`
We know that `secθ="Hypotenuse"/"Base" and cosecθ= "Hypotenuse"/"Perpendicular"`
We find:
`(Cosec^2θ-sec^2 θ)/(Cosec^2 +sec^2 θ)`
`((sqrt8/1)^2-(sqrt8/sqrt7)^2)/((sqrt8/1)^2+(sqrt8/sqrt7)^2)`
=(8/1-8/7)/(8/1+8/7)
=`(48/7)/(64/7)`
=`3/4`
APPEARS IN
संबंधित प्रश्न
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find sine of 62° 57'
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
If sec A + tan A = x, then sec A = ______.