मराठी

If Tan θ = 1 √ 7 , Then C O S E C 2 θ − Sec 2 θ C O S E C 2 θ + Sec 2 θ =V - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\] 

पर्याय

  • \[\frac{5}{7}\]

  • \[\frac{3}{7}\]

  • \[\frac{1}{12}\]

  • \[\frac{3}{4}\]

MCQ

उत्तर

Given that:

`tan θ=1/sqrt7`

We are asked to find the value of the following expression

`(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)`

Since `tan θ= "Perpendicular"/"Base"` .

⇒ `"Perpendicular"=1` 

⇒ `"Base"= sqrt7` 

⇒ `"Hypotenuse"=sqrt(1+7)` 

⇒`" Hypotenuse"=sqrt8`

We know that `secθ="Hypotenuse"/"Base"  and  cosecθ= "Hypotenuse"/"Perpendicular"` 

We find:

`(Cosec^2θ-sec^2 θ)/(Cosec^2 +sec^2 θ)`

`((sqrt8/1)^2-(sqrt8/sqrt7)^2)/((sqrt8/1)^2+(sqrt8/sqrt7)^2)`

=(8/1-8/7)/(8/1+8/7)

=`(48/7)/(64/7)`

=`3/4`

 

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 6 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;

(i) cosec 69º + cot 69º

(ii) sin 81º + tan 81º

(iii) sin 72º + cot 72º


Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


Express the following in terms of angle between 0° and 45°:

sin 59° + tan 63°


Find the value of angle A, where 0° ≤ A ≤ 90°.

sin (90° – 3A) . cosec 42° = 1


Use tables to find sine of 62° 57'


Use tables to find the acute angle θ, if the value of sin θ is 0.3827


Evaluate:

`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`


Prove that:

`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`


If A and B are complementary angles, prove that:

cosec2 A + cosec2 B = cosec2 A cosec2 B


If A and B are complementary angles, prove that:

`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`


∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.


If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]


If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 


\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to 


Prove the following.

tan4θ + tan2θ = sec4θ - sec2θ


Prove that:

\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


If sec A + tan A = x, then sec A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×