Advertisements
Advertisements
प्रश्न
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
उत्तर
Since, A and B are complementary angles, A + B = 90°
cosec2 A + cosec2 B
= cosec2 A + cosec2 (90° – A)
= cosec2 A + sec2 A
= `1/sin^2A+1/cos^2A`
= `(cos^2A + sin^2A)/(sin^2Acos^2A)`
= `1/(sin^2Acos^2A)`
= cosec2 A sec2 A
= cosec2 A sec2 (90° – B)
= cosec2 A cosec2 B
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Prove that:
sec (70° – θ) = cosec (20° + θ)
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If the angle θ = –45° , find the value of tan θ.
Write the value of tan 10° tan 15° tan 75° tan 80°?
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
Sin 2B = 2 sin B is true when B is equal to ______.