Advertisements
Advertisements
Question
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
Solution
Since, A and B are complementary angles, A + B = 90°
cosec2 A + cosec2 B
= cosec2 A + cosec2 (90° – A)
= cosec2 A + sec2 A
= `1/sin^2A+1/cos^2A`
= `(cos^2A + sin^2A)/(sin^2Acos^2A)`
= `1/(sin^2Acos^2A)`
= cosec2 A sec2 A
= cosec2 A sec2 (90° – B)
= cosec2 A cosec2 B
APPEARS IN
RELATED QUESTIONS
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
`sec75/(cosec15)`
Evaluate:
tan(55° - A) - cot(35° + A)
Use tables to find cosine of 26° 32’
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
If the angle θ = –45° , find the value of tan θ.
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.