Advertisements
Advertisements
Question
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Solution
From the tables, it is clear that tan 25° 18’ = 0.4727
tan θ − tan 25° 18’ = 0.4741 − 0.4727 = 0.0014
From the tables, diff of 4’ = 0.0014
Hence, θ = 25° 18’ + 4’ = 25° 22’
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If the angle θ = –45° , find the value of tan θ.
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If x and y are complementary angles, then ______.