English

If the Angle θ = –45° , Find the Value of Tan θ. - Geometry Mathematics 2

Advertisements
Advertisements

Question

If the angle θ = –45° , find the value of tan θ.

Sum

Solution

We know, tan(−θ) = −tanθ
45° = 1
When θ = –45°,
tan(−45°) = −tan45° = −1

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) B

RELATED QUESTIONS

If the angle θ = -60° , find the value of sinθ .


Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;

(i) cosec 69º + cot 69º

(ii) sin 81º + tan 81º

(iii) sin 72º + cot 72º


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


Solve.
sin15° cos75° + cos15° sin75°


Evaluate:

3cos80° cosec10° + 2 sin59° sec31°


Use tables to find sine of 62° 57'


Evaluate:

`sec26^@ sin64^@ + (cosec33^@)/sec57^@`


Prove that:

`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`


If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?


Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]


If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]

 

If tan2 45° − cos2 30° = x sin 45° cos 45°, then x


The value of tan 1° tan 2° tan 3° ...... tan 89° is 


Prove that:

\[\frac{sin\theta  \cos(90°  - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


A, B and C are interior angles of a triangle ABC. Show that

sin `(("B"+"C")/2) = cos  "A"/2`


Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.


The value of (tan1° tan2° tan3° ... tan89°) is ______.


Prove the following:

tan θ + tan (90° – θ) = sec θ sec (90° – θ)


If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×