Advertisements
Advertisements
Question
If the angle θ = –45° , find the value of tan θ.
Solution
We know, tan(−θ) = −tanθ
45° = 1
When θ = –45°,
tan(−45°) = −tan45° = −1
APPEARS IN
RELATED QUESTIONS
If the angle θ = -60° , find the value of sinθ .
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Solve.
sin15° cos75° + cos15° sin75°
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Use tables to find sine of 62° 57'
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of tan 1° tan 2° tan 3° ...... tan 89° is
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
The value of (tan1° tan2° tan3° ... tan89°) is ______.
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.