Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Solution
We have to prove `((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
We know that, `sec^2 theta - tan^2 theta = 1`
So
`((1 + cot^2 theta)tan theta)/sec^2 theta = ((1 + cot^2 theta)tan theta)/(1 + tan^2 theta)`
` = ((1 + 1/tan^2 theta)tan theta)/(1 + tan^2 theta)`
`= (((tan^2 theta + 1)/(tan^2 theta)) tan theta)/(1 + tan^ 2 theta)`
`= ((1 + tan^2 theta)tan theta)/(tan^2 theta(1 + tan^2 theta))`
`= 1/tan theta`
`= cot theta`
APPEARS IN
RELATED QUESTIONS
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Solve.
`tan47/cot43`
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If A and B are complementary angles, then
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
Evaluate: cos2 25° - sin2 65° - tan2 45°
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`