English

If 3 Cos Theta = 1, Find the Value of (6 Sin^2 Theta + Tan^2 Theta)/(4 Cos Theta) - Mathematics

Advertisements
Advertisements

Question

if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`

Solution

Given `3 cos theta = 1`

We have to find the value of the expression `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`

We have

`3 cos theta = 1`

`=> cos theta = 1/3`

`sin theta = sqrt(1 - cos^2 theta) =  sqrt(1- (1/3)^3) = sqrt8/3`

`tan theta = sin theta/cos theta = (sqrt8/3)/(1/3) = sqrt8`

Therefore,

`(6 sin^2 theta + tan^2 theta)/(4 cos theta) = (6 xx (sqrt8/3)^2 + (sqrt8)^2)/(4 xx 1/3)`

= 10

Hence, the value of the expression is 10.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.2 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.2 | Q 9 | Page 54

RELATED QUESTIONS

`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`

 


Without using trigonometric tables, evaluate the following:

`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`


If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`


Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.


Evaluate.
sin235° + sin255°


Express the following in terms of angles between 0° and 45°:

cosec68° + cot72°


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Prove that:

`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`


Use tables to find sine of 21°


Prove that:

sin (28° + A) = cos (62° – A)


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


What is the maximum value of \[\frac{1}{\sec \theta}\] 


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B


If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\]  find the value of (sin A + cos A) sec A. 


If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =


In the following figure  the value of cos ϕ is 


Find the value of the following:

tan 15° tan 30° tan 45° tan 60° tan 75°


In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×