Advertisements
Advertisements
Question
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
Solution
Given: `cot θ=1/sqrt3`
`"Base"/"Perpendicular"=1/sqrt3`
`"Base"=1`
`"Perpendicular"=sqrt3`
`"Hypotenuse"= sqrt(("Perpendicular")^2+(Base)^2)`
`"Hypotenuse"=2`
Now we find, `(1-cos^2 θ)/(2- sin^2 θ)`
= `(1- ("Base")^2/("hypotenuse")^2)/ (2-("Perpendicular")^2/("hypotenuse")^2)`
=`(1-(1)^2/(2)^2)/(2-(sqrt3)^2/(2)^2)`
=`(1-1/4)/(2-3/4)`
=`3/5`
Hence the value of `(1-cos^2θ)/(2-sin^2θ)` is `3/5`
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
Evaluate `(sin 18^@)/(cos 72^@)`
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
solve.
sec2 18° - cot2 72°
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find sine of 34° 42'
Use tables to find cosine of 9° 23’ + 15° 54’
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
In the following figure the value of cos ϕ is
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Solve: 2cos2θ + sin θ - 2 = 0.
`tan 47^circ/cot 43^circ` = 1