Advertisements
Advertisements
Question
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Solution
cos (2x – 6) = cos2 30° – cos2 60°
cos (2x – 6) = cos2 (90° – 60°) – cos2 60°
cos (2x – 6) = sin2 60° – cos2 60°
cos (2x – 6) = 1 – 2 cos2 60°
= `1 - 2(1/2)^2`
= `1 - 1/2`
= `1/2`
cos (2x – 6) = `1/2`
cos (2x – 6) = cos 60°
(2x – 6) = 60°
2x = 66°
Hence, x = 33°
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Use tables to find sine of 10° 20' + 20° 45'
Use tables to find cosine of 2° 4’
Prove that:
sec (70° – θ) = cosec (20° + θ)
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°