Advertisements
Advertisements
Question
Use tables to find cosine of 2° 4’
Solution
cos 2° 4’ = 0.9994 − 0.0001 = 0.9993
APPEARS IN
RELATED QUESTIONS
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
Sin 2A = 2 sin A is true when A =
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
If tan θ = cot 37°, then the value of θ is
`(sin 75^circ)/(cos 15^circ)` = ?
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.