Advertisements
Advertisements
Question
If tan θ = cot 37°, then the value of θ is
Options
37°
53°
90°
1°
Solution
53°
Explanation;
Hint:
tan θ = cot 37°
= cot (90° – 53°)
= tan 53°
The value of θ is 53°
APPEARS IN
RELATED QUESTIONS
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Prove that:
sin (28° + A) = cos (62° – A)
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If 8 tan x = 15, then sin x − cos x is equal to
Evaluate: cos2 25° - sin2 65° - tan2 45°
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
If tan θ = 1, then sin θ . cos θ = ?