Advertisements
Advertisements
प्रश्न
If tan θ = cot 37°, then the value of θ is
पर्याय
37°
53°
90°
1°
उत्तर
53°
Explanation;
Hint:
tan θ = cot 37°
= cot (90° – 53°)
= tan 53°
The value of θ is 53°
APPEARS IN
संबंधित प्रश्न
Solve.
`cos55/sin35+cot35/tan55`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
What is the maximum value of \[\frac{1}{\sec \theta}\]
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
The value of tan 10° tan 15° tan 75° tan 80° is
`tan 47^circ/cot 43^circ` = 1