Advertisements
Advertisements
प्रश्न
`tan 47^circ/cot 43^circ` = 1
पर्याय
True
False
उत्तर
This statement is True.
Explanation:
Since, tan(90° – θ) = cot θ
`(tan 47^circ)/(cot 43^circ) = (tan(90^circ - 43^circ))/(cot 43^circ)`
`(tan 47^circ)/(cot 43^circ) = (cot 43^circ)/cot 43^circ` = 1
`(tan 47^circ)/(cot 43^circ)` = 1
APPEARS IN
संबंधित प्रश्न
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Write all the other trigonometric ratios of ∠A in terms of sec A.
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Solve.
`cos22/sin68`
Evaluate.
cos225° + cos265° - tan245°
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Evaluate:
tan(55° - A) - cot(35° + A)
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
What is the maximum value of \[\frac{1}{\sec \theta}\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
If x and y are complementary angles, then ______.