Advertisements
Advertisements
प्रश्न
`tan 47^circ/cot 43^circ` = 1
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
Since, tan(90° – θ) = cot θ
`(tan 47^circ)/(cot 43^circ) = (tan(90^circ - 43^circ))/(cot 43^circ)`
`(tan 47^circ)/(cot 43^circ) = (cot 43^circ)/cot 43^circ` = 1
`(tan 47^circ)/(cot 43^circ)` = 1
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Write all the other trigonometric ratios of ∠A in terms of sec A.
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Solve.
sin42° sin48° - cos42° cos48°
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Use trigonometrical tables to find tangent of 37°
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Write the maximum and minimum values of sin θ.
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
The value of tan 10° tan 15° tan 75° tan 80° is
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
If sec A + tan A = x, then sec A = ______.