Advertisements
Advertisements
प्रश्न
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
उत्तर
sin 42° sec 48° + cos 42° cosec 48° = 2
Consider sin 42° sec 48° + cos 42° cosec 48°
`=>` sin 42° sec (90° – 42°) + cos 42° cosec (90° – 42°)
`=>` sin 42° cosec 42° + cos 42° sec 42°
`=> sin 42^circ xx 1/(sin42^circ) + cos42^circ xx 1/(cos42^circ)`
`=>` 1 + 1 = 2
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
The value of the expression (cos2 23° – sin2 67°) is positive.