Advertisements
Advertisements
प्रश्न
Show that : tan 10° tan 15° tan 75° tan 80° = 1
उत्तर
L.H.S. = tan 10° tan 15° tan 75° tan 80°
= tan(90° – 80°) tan(90° – 75°) tan 75° tan 80°
= cot 80° cot 75° tan 75° tan 80° ...[∵ tan(90° – θ] = cot θ]]
= tan 80° cot 80° × tan 75° cot 75°
= 1 × 1
= 1 = R.H.S. ...(∵ tan A cot A = 1)
APPEARS IN
संबंधित प्रश्न
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Choose the correct alternative:
1 + cot2θ = ?
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A