Advertisements
Advertisements
प्रश्न
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
उत्तर
L.H.S = sin6A + cos6A
= (sin2A)3 + (cos2A)3
= (1 – cos2A)3 + (cos2A)3 ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2A")]`
= 1 – 3cos2A + 3(cos2A)2 – (cos2A)3 + cos6A ......[∵ (a – b)3 = a3 – 3a2b + 3ab2 – b3]
= 1 – 3 cos2A(1 – cos2A) – cos6A + cos6A
= 1 – 3 cos2A sin2A
= R.H.S
∴ sin6A + cos6A = 1 – 3sin2A . cos2A
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Write the value of tan1° tan 2° ........ tan 89° .
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?