Advertisements
Advertisements
प्रश्न
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
उत्तर
LHS = `(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))`
=`tan^2 theta/sec^2 theta + cot^2 theta/ cosec ^2 theta (∵ sec^2 theta - tan^2 theta = 1 and cosec^2 theta - cot^2 theta=1)`
=`(sin^2theta/cos^2 theta)/(1/cos^2theta) + (cos^2theta/sin^2 theta)/(1/sin^2 theta)`
=` sin^2 theta + cos^2 theta`
=1
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
What is the value of (1 − cos2 θ) cosec2 θ?
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.