Advertisements
Advertisements
प्रश्न
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
उत्तर
LHS = `(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))`
=`tan^2 theta/sec^2 theta + cot^2 theta/ cosec ^2 theta (∵ sec^2 theta - tan^2 theta = 1 and cosec^2 theta - cot^2 theta=1)`
=`(sin^2theta/cos^2 theta)/(1/cos^2theta) + (cos^2theta/sin^2 theta)/(1/sin^2 theta)`
=` sin^2 theta + cos^2 theta`
=1
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Evaluate sin25° cos65° + cos25° sin65°
(secA + tanA) (1 − sinA) = ______.
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.